Stem Cell Delivery With Polymer Hydrogel for Treatment of Intervertebral Disc Degeneration: From 3D Culture to Design of the Delivery Device for Minimally Invasive Therapy.
نویسندگان
چکیده
Nucleus pulposus (NP) tissue damage can induce detrimental mechanical strain on the biomechanical performance of intervertebral discs (IVDs), causing subsequent disc degeneration. A novel, photocurable, injectable, synthetic polymer hydrogel (pHEMA-co-APMA grafted with PAA) has already demonstrated success in encapsulating and differentiating human mesenchymal stem cells (hMSCs) toward an NP phenotype during hypoxic conditions. After demonstration of promising results in our previous work, in this study we have further investigated the inclusion of mechanical stimulation and its impact on hMSC differentiation toward an NP phenotype through the characterization of matrix markers such as SOX-9, aggrecan, and collagen II. Furthermore, investigations were undertaken in order to approximate delivery parameters for an injection delivery device, which could be used to transport hMSCs suspended in hydrogel into the IVD. hMSC-laden hydrogel solutions were injected through various needle gauge sizes in order to determine its impact on postinjection cell viability and IVD tissue penetration. Interpretation of these data informed the design of a potential minimally invasive injection device, which could successfully inject hMSCs encapsulated in a UV-curable polymer into NP, prior to photo-cross-linking in situ.
منابع مشابه
Degenerative Disc Disease: A Review of Cell Technologies and Stem Cell Therapy
Background & Aim: Low back pain is broadly documented as one of the most widespread pathologies in the advanced domain. Although the reasons of low back pain are uncountable, it has been meaningfully related to intervertebral disc degeneration. Present therapies for Intervertebral Disc (IVD) degeneration such as physical therapy and spinal fusion reduce symptoms' severity, but do not treat the ...
متن کاملMR Monitoring of Minimally Invasive Delivery of Mesenchymal Stem Cells into the Porcine Intervertebral Disc
PURPOSE Bone marrow stem cell therapy is a new, attractive therapeutic approach for treatment of intervertebral disc (IVD) degeneration; however, leakage and backflow of transplanted cells into the structures surrounding the disc may lead to the formation of undesirable osteophytes. The purpose of this study was to develop a technique for minimally invasive and accurate delivery of stem cells. ...
متن کاملThermally triggered hydrogel injection into bovine intervertebral disc tissue explants induces differentiation of mesenchymal stem cells and restores mechanical function.
We previously reported a synthetic Laponite® crosslinked pNIPAM-co-DMAc (L-pNIPAM-co-DMAc) hydrogel which promotes differentiation of mesenchymal stem cells (MSCs) to nucleus pulposus (NP) cells without additional growth factors. The clinical success of this hydrogel is dependent on: integration with surrounding tissue; the capacity to restore mechanical function; as well as supporting the viab...
متن کاملNonviral Gene Delivery of Growth and Differentiation Factor 5 to Human Mesenchymal Stem Cells Injected into a 3D Bovine Intervertebral Disc Organ Culture System
Intervertebral disc (IVD) cell therapy with unconditioned 2D expanded mesenchymal stem cells (MSC) is a promising concept yet challenging to realize. Differentiation of MSCs by nonviral gene delivery of growth and differentiation factor 5 (GDF5) by electroporation mediated gene transfer could be an excellent source for cell transplantation. Human MSCs were harvested from bone marrow aspirate an...
متن کاملFluoroscopy Assisted Minimally Invasive Transplantation of Allogenic Mesenchymal Stromal Cells Embedded in HyStem Reduces the Progression of Nucleus Pulposus Degeneration in the Damaged Interverbal Disc: A Preliminary Study in Rabbits
This study was conducted to develop a technique for minimally invasive and accurate delivery of stem cells to augment nucleus pulposus (NP) in damaged intervertebral discs (IVD). IVD damage was created in noncontiguous discs at L4-L5 level; rabbits (N = 12) were randomly divided into three groups: group I treated with MSCs in HyStem hydrogel, group II treated with HyStem alone, and group III re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell transplantation
دوره 25 12 شماره
صفحات -
تاریخ انتشار 2016